Closing Today: HW_7A, 7B, $7 \mathrm{C}(7.8,8.1)$ Good news: We have a method to Midterm 2 is Thursday, May 18 Covers: 6.4, 6.5, 7.1-7.5, 7.7, 7.8, 8.1 Today:
Finish Arc Length and Review for Exam 2

8.1 Arc Length (continued)

 Last time we derived:$$
\text { Arc Length }=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} d x
$$

write down an integral for arc length. Bad news: The arc length integral rarely can be evaluated explicitly. In HW, you see a few, unusual, cases where you can compute arc length.

Entry Task: Two homework questions. Find the arc length of
A) $y=\frac{x^{4}}{8}+\frac{1}{4 x^{2}}$ for $1 \leq x \leq 2$.
B) $y=\ln \left(1-x^{2}\right)$ for $0 \leq x \leq 1 / 7$.

A Brief Exam 2 Review

Integration!

1. The $\mathbf{4}$ special methods

$$
\begin{aligned}
\text { By parts: } & x e^{3 x}, x^{2} \cos (5 x) \\
& \frac{\ln (x-1)}{x^{2}}, x \tan ^{-1}(x)
\end{aligned}
$$

Trig: $\quad \sin ^{3}(x) \cos (x), \cos ^{4}(x)$, $\sec ^{3}(2 x) \tan ^{3}(2 x)$

Trig sub: $\frac{1}{x \sqrt{x^{2}-9}}, \frac{1}{\left(4-x^{2}\right)^{3 / 2}}$,
$\sqrt{x^{2}+6 x+10}$.

$$
\begin{array}{r}
\text { Part Frac: } \frac{x+2}{(x-1)(x-3)^{2}}, \frac{4 x}{(x-1)^{2}(x-3)^{\prime}} \\
\frac{5}{x\left(x^{2}+4\right)^{\prime}}, \frac{x^{2}}{x+7}, \frac{x-3}{x^{2}+8 x+20}
\end{array}
$$

2. Substitution and Simplifying

$\operatorname{Try} u=\sqrt{x}, \mathrm{u}=\operatorname{inside}, \mathrm{u}=\mathrm{e}^{\mathrm{x}}, \mathrm{u}=\operatorname{trig}$.
Know trig facts, such as
$\tan (x)=\frac{\sin (x)}{\cos (x)}, \sec (x)=\frac{1}{\cos (x)}$.
square identities, and half-angle.

3. Improper Integrals:

a) Rewrite as a limit!!
b) Integrate
c) Take limit

4. Trapezoid/Simpson Rules

a) Set up integral, then compute width and label tickmarks.
b) Use formula.

Random Integrals from Old Finals:

1. $\int \frac{1-x}{\sqrt{1-x^{2}}} d x$
2. $\int \frac{x^{2}-x+8}{x^{3}+4 x} d x$
3. $\int 2 x \ln (x+5) d x$
4. $\int \cos ^{3}(x) d x$
5. $\int_{0}^{2} \frac{1}{\sqrt{x^{2}+2 x+4}} d x$
6. $\int_{1}^{3} \frac{1}{x^{2}+x^{3}} d x$
7. $\int \tan ^{2} x \sec ^{4}(x) d x$
8. $\int \frac{1}{(1+\sqrt{x})^{3}} d x$
9. $\int \sin (x) \sqrt{\cos (x)} d x$

Random Improper Integrals:

1. $\int_{1}^{2} \frac{x}{\sqrt{x-1}} d x$
2. $\int_{-3}^{\infty} x e^{-x} d x$
3. $\int_{1}^{\infty} \frac{1}{\sqrt{x}(1+x)} d x$

Approximation:

1. Use Simpson's Method with $\mathrm{n}=4$
subdivision to approximate the value of

$$
\int_{0}^{4} \sqrt{1+4 x^{4}} d x
$$

5. New Applications

a) Average value $=\frac{1}{b-a} \int_{a}^{b} f(x) d x$
b) Arc Length
c) Work $=\int_{a}^{b}($ Force $)($ Dist $)$
(i) If $f(x)=$ "force formula at x ", then

Force $=\mathrm{f}(\mathrm{x})$, Dist $=\Delta \mathrm{x}$;
Work $=\int_{a}^{b} f(x) d x$
(ii) Chain/Cable: $\mathrm{k}=$ force/length

If you label top: $\mathrm{x}=0$, then
Force $=\mathrm{k} \Delta \mathrm{x}$, Dist $=\mathrm{x}$;
Work $=\int_{a}^{b} k \mathrm{x} d x$
(iii) Pumping: $\mathrm{k}=$ force/volume

If top is $y=b$, then

$$
\text { Force }=k(\text { Area }) \Delta y, \text { Dist }=b-y ;
$$

$$
\text { Work }=\int_{a}^{b} k(\text { Area })(b-y) d y
$$

Applications from old tests:

1. Find the average value of $\cos ^{3}(x)$ on the interval 0 to $\pi / 2$.
2. A spring has natural length of 30 cm from the wall. It requires 2 J of work to stretch it from 40 cm to 45 cm (from the wall). How far beyond its natural length will a force of 64 N keep the spring stretched?
3. A 1600 lb elevator is suspended by a 200 ft cable that weighs $10 \mathrm{lb} / \mathrm{ft}$. How much work is required to raise the elevator from the basement to the third floor, a distance of 30 ft ?
4. A rope is used to pull a bucket full of water up from a well that is 10 m deep. The rope has a total mass of 5 kg . The bucket has a mass of 11 kg . Find the total work done in lifting the bucket to the top (Recall: Accel. due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$)
5. A well is in the shape of a cylinder of radius 1 meter and depth 8 meters. It is half full of water. Find the word to pump all the water to the top. (Recall: Water weighs $9800 \mathrm{~N} / \mathrm{m}^{3}$)
6. The portion of the graph $y=x^{2} / 9$ between $x=0$ and $x=3$ is rotated about the y-axis to form a container. The container is full of a liquid that has density $100 \mathrm{lbs} / \mathrm{ft}^{3}$. Find the work required to pump all the liquid to the top of the container.
